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The van der Pol equation [1] corresponds to a non-linear oscillatory system that has both
input and output sources of energy. This equation is given by the expression

xK#x"k (1!x2)xR , (1)

where k is a non-negative parameter. For the case where no input in energy exists, equation
(1) reduces to

xK#x"!kx2xR . (2)

This equation can be appropriately called the &&unplugged'' van der Pol equation and all of
its solutions are expected to oscillate with decreasing amplitude to zero. The approach to
zero of its solutions can be shown by using an energy argument [2]. Writing equation (2) in
system form gives

dx

dt
"y,

dy

dt
"!x!kx2y. (3a, b)

Multiplying the "rst equation by 2x, the second equation by 2y, and adding yields the result

dr2

dt
"!2kx2y2, r2"x2#y2. (4)

Since the right-hand side of equation (4) is non-positive for all values of x and y, it follows
that [2]

Lim
t?=

r2"0Nx (t)P0, y (t)P0. (5)

It is of interest to note that elementary methods of numerical integration, applied to the
unplugged van der Pol equation (2), do not give results that are consistent with equation (5).
In fact, the use of the forward Euler method leads to a scheme for which the "xed-point
(xN , yN )"(0, 0) is always unstable [3]. Thus, the dynamics of the discrete equations are
inconsistent with those of the original di!erential equation (2).

The main purpose of this paper is to show that a dynamically consistent "nite-di!erence
scheme can be constructed for the unplugged van der Pol equation using the non-standard
procedures investigated by Mickens [4, 5]. Further, this scheme requires a restriction on the
step-size that depends on the initial conditions and the damping parameter k.
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To begin with, equation (2) can be rewritten in an alternative system form of two coupled
"rst order di!erential equations; they are

dx

dt
"y!A

k
3Bx3,

dy

dt
"!x. (6a, b)

It is this form that will be used in the work to follow. Applying the methods of Mickens
[4, 5] to equations (6), the following "nite-di!erence scheme is obtained:

x
k`1

!x
k

/
"y

k
!A

k
3B x3

k
,

y
k`1

!y
k

/
"!x

k`1
, (7a, b)

where t
k
"hk, with h"Dt; x

k
is an approximation to x (t

k
); and / is the denominator

function [6] which is taken to be

/"2 sin (h/2). (8)

Note that to proceed with the numerical calculation, x
k`1

is calculated from equation (7a)
in terms of x

k
and y

k
; then y

k`1
is determined using equation (7b) and the previously

calculated x
k`1

from equation (7a). The discrete model for the second order di!erential
equation (2) can be obtained by eliminating y

k
and y

k`1
in equation (7); this leads to the

expression

x
k`1

!2x
k
#x

k~1
/2

#x
k
"!k A

x2
k
#x

k
x
k~1

#x2
k~1

3 B A
x
k
!x

k~1
/ B . (9)

Observe that the second-order derivative is replaced by a central di!erence representation,
while the "rst order derivative is a backward Euler scheme. Of importance is the fact that
the x2 term is symmetric in the discrete functions x

k
and x

k~1
, i.e.,

x2P
x2
k
#x

k
x
k~1

#x2
k~1

3
. (10)

For small k, i.e., 0(k@1, the non-linear, second order di!erence equation (9) can be solved
by means of a discrete form [7] of the method of slowly varying amplitude and phase [1].
The result is that [8]

x
k
P0, kPR. (11)

In more detail, x
k

oscillates with a damped amplitude. Thus, the "nite-di!erence scheme,
given by equation (9), has the same dynamical behavior as the original di!erential equation
(2) for small k.

For arbitrary but positive values of k, the dynamical behavior of the solutions to
equations (7) and (9) can be obtained by using these equations as devices for the numerical
integration of equation (2). The following initial conditions are used in the work to come:

x (0)"x
0
, y(0)"y

0
"0. (12)

To use equation (9), both x
0

and x
1

must be known. Since x
0

is given, along with y
0
, x

1
can

be determined by use of a Taylor series expansion,

x
1
"x (h)"x (0)#xR (0)h#O (h2). (13)

Using the initial conditions and the di!erential equation (2), it follows that

x(0)"x
0
, xR (0)"!(k/3) x3

0
(14)
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and

x
1
"x

0
[1!(kx2

0
/3)h#O(h2)]. (15)

The physics of this case dictates that

Dx
1
D(Dx

0
D. (16)

Further, an examination of equation (15) shows that if k and/or x
0

are large enough, then
the condition of equation (16) can be violated. In other words, there exists a critical
step-size, h*, and a constant, C, such that

h*"A
3

kx2
0
B C, (17)

where it is expected that C"O(1).
The value of C can be determined by the following procedure. Select particular values for

h and x
0
, and use equations (7) to obtain numerical values for x

k
and y

k
, at a given small

value for the parameter k. Increase the value of k until over#ow occurs. One can also "x
h and k, and increase the value of x

0
until over#ow occurs. Using both procedures, it was

found that h* is given by the relation

h*"2 A
3

kx2
0
B , (18)

which corresponds to C"2. (In general, to two signi"cant decimal places, C"1)99 for all
sets of (h, x

0
, k) studied.)

In actual numerical work, a value for the step-size close to

h"h*/20, (19)

would be used to make sure that both the initial rapid transient e!ects are resolved as well
as the oscillatory behavior of the motion. Figure 1 presents a typical set of plots for values of
(h, x

0
, k) that satisfy the condition h(h*, where h* is given by equation (18).

The following is a summary of the major results presented in this paper:

(a) A non-standard "nite-di!erence scheme was constructed for the unplugged van der
Pol equation. This discrete model resolves the di$culties [3] arising from the use of the
forward Euler scheme for the derivatives in equations (6), i.e.,

x
k`1

!x
k

h
"y

k
!(k/3) x3

k
,

y
k`1

!y
k

h
"!x

k
. (20a, b)

Note that in addition to having the denominator function /"2 sin(h/2), in place of h in
equations (20), the non-standard scheme, in equations (7), also replaces the x, on the
right-hand side of equation (6b), by its value at the advanced time t

k`1
. This is a very critical

change; see Mickens [4] for a discussion of this issue.
(2) A major discovery was that of a critical step-size, h*, whose value depended on both

the damping parameter k and the initial value x
0
. For h'h*, the numerical solution

over#owed. To the best of our knowledge, this is the "rst time that such a restriction has
been explicitly stated. It may be postulated that this situation is a generic feature for
oscillatory problems.

(3) Future work on this topic will involve the "nding of other examples of this
phenomenon. A good set of equations to study comprises the Lotka}Volterra equations
[9]. Previous work has shown that it is quite di$cult to construct discrete "nite-di!erence
models that are dynamically consistent with the original di!erential equations [10].



Figure 1. Plots of (a) x
k
versus k and (b) x

k
versus y

k
for the parameter values x

0
"10, y

0
"0, k"0)1, h"0)1.
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Finally, it should be indicated that all of the results found for the non-standard
discretization of the system equations (6) generalize also to the system representation of
equation (2) given by equations (3). For this case, the discrete system equations are

x
k`1

!x
k

/
"y

k
,

y
k`1

!y
k

/
"!x

k`1
!kx2

k`1
y
k
, (21a, b)

where /"2 sin (h/2) and the x-functions in equation (3b) are evaluated at the advanced
time step, t

k`1
[4]. The elimination of y

k
results in the following second order di!erence

equation for x
k
:

x
k`1

!2x
k
#x

k~1
/2

#x
k
"!kx2

k A
x
k
!x

k~1
/ B. (22)

The signi"cant feature here is the use of a backward Euler representation for the "rst order
derivative.

ACKNOWLEDGMENTS

This work has been supported in part by research Grants from DOE and the
MBRS-SCORE Program at Clark Atlanta University.



LETTERS TO THE EDITOR 761
REFERENCES

1. R. E. MICKENS 1996 Oscillations in Planar Dynamic Systems. River Edge, NJ: World Scienti"c.
2. D. W. JORDAN and P. SMITH 1987 Nonlinear Ordinary Di+erential Equations. Oxford: Oxford

University Press; second edition.
3. X. WANG, E. K. BLUM and Q. LI 1994 Proceedings of Symposia in Applied Mathematics, Vol. 48,

399}402. Local dynamics and bifurcation consistencies of continuous-time dynamical systems
and their numerical discretizations.

4. R. E. MICKENS 1994 Nonstandard Finite Di+erence Models of Di+erential Equations. River Edge,
NJ: World Scienti"c.

5. R. E. MICKENS 1999 Journal of Computational Acoustics 7, 39}58. An introduction to nonstandard
"nite di!erence schemes.

6. R. E. MICKENS and A. SMITH 1990 Journal of the Franklin Institute 327, 143}145. Finite di!erence
models of ordinary di!erential equations: In#uence of denominator functions.

7. R. E. MICKENS 1990 Di+erence Equations: ¹heory and Applications. New York: Chapman and
Hall. Section 7.3.

8. R. E. MICKENS 2000 Analytical approximation to discrete models of the unplugged van der Pol
equation (unpublished).

9. L. EDELSTEIN-KESHET 1998 Mathematical Models in Biology. New York: McGraw-Hill.
10. J. M. SANZ-SERNA 1994 Applied Numerical Mathematics 16, 245}250. An unconventional

symplectic integrator of W. Kahan.


	Figure 1
	ACKNOWLEDGMENTS
	REFERENCES

